
Quality Controlled Composition Generation

Jan Reimann

Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany
jan.reimann@tu-dresden.de

Abstract. Software development processes include functional and non-
functional requirements (NFRs) in the analysis phase but usually do
not propagate NFRs into the design and implementation. In many cases
NFRs are tackled after implementation for performance tuning. However,
software as needed in cyber-physical systems is highly dependent on qual-
ity requirements (which we use synonymously for NFRs), because they
interact with the physical world and safety aspects are critical. Thus,
quality concerns must drive development processes in the whole life cy-
cle. Component-based software engineering gives a good starting point
for integrating NFRs into the whole development process, since imple-
mentations satisfy well-defined interfaces and enable variability referring
to the ability of exchanging a component’s implementation. This vari-
ability suggests that different implementations can be distinguished in
terms of the quality requirements they fulfil in contrast to their functional
properties. Hence, NFRs are a variability dimension in software systems
which must be considered. In this paper we outline an approach combin-
ing hyperspaces, enabling separation of quality concerns, with feature
trees, being used for quality variability handling, for enabling explicit
quality modelling to drive system composition. Dependent on different
system contexts then a new composition can be generated based on the
quality requirements which are needed to be satisfied in certain contexts.

Keywords: Composition Generation, Quality Variability, Hyperspace,
Feature Modelling, Cyber-Physical System, Quality Controlled Compo-
sition

1 Motivation

Cyber-physical systems (CPS) are a good example for quality-dependent systems
because software and physical processes affect each other in feedback loops [9].
Hence, unforeseeable changes of the physical world are propagated to the vir-
tual world and therefore cannot be predicted completely at design time. For
this reason, quality requirements such as response-time, safety and energy con-
sumption must underlie special attention to prevent self-violation of the system
and its surrounding. Thus, context changes influence the quality requirements
of the system and must trigger a regeneration of the overall system composition



because different contexts may need varying quality requirements. In this sense,
the whole system can be composed optimally w.r.t. the current context.

In quality aware systems three main characteristics need to be satisfied:
1) multi-qualities, 2) quality dependencies, and 3) dynamic composition genera-
tion. In the following we discuss the problems associated with those character-
istics.

Since quality requirements cannot be fulfilled by a single component [13],
quality concerns are widespread over the whole architecture without being con-
nected to each other conceptually. This non-related distribution of quality han-
dling results in a system which is not dynamically recomposed if contexts change
and therefore other quality requests must be served. This constitutes the prob-
lem that no system knowledge exists about which artefacts fulfil which quality
requirements because of unknown scattered quality requirement realisations.

Qualities are interrelated and may not be considered in isolation [5]. That
means, if the context changes along with the context’s quality requirements it
must be clear which dependent quality requirements must be satisfied although
they are not directly affected by the context change.

Dynamic generation of system compositions dependent on context changes
require for being able to navigate from quality requirements to satisfying arte-
facts at design time and at runtime. Only runtime tracing from quality require-
ments to fulfilling components exploit the knowledge of which quality require-
ments hold in a certain context and is therefore essential in the whole develop-
ment process.

2 Hyperspace Quality Controlled Composition System

We believe that the general strategy to tackle the described problems is a separa-
tion of quality concerns instead of scattering them over the system. To separate
concerns we must specify quality attributes and functional artefacts detached
from each other. The basic idea is to build on the Hyperspace approach with
multi-dimensional separation of concerns from Ossher and Tarr [11] because
qualities are crosscutting and can be handled if considered as dimensions in a
hyperspace.

As a precondition we distinguish between quality requirements of the system
under development in contrast to quality assertions, being satisfied by a certain
artefact. Quality requirements are detached from artefacts because they don’t
make assumptions about the concrete components contained in the system. On
the other hand quality assertions express explicitly which concrete quality values
can be fulfilled by units and therefore are connected to them. Fig. 1 a) illustrates
an example with the quality assertions response time, energy consumption and
accuracy for exemplary concrete component implementations encapsulated be-
hind the two interfaces car control component and distance sensing component.

Assuming that all components possess quality assertions, we span up a hy-
perspace. As can be seen in Fig. 1 b) every quality complies with one dimension.
Each dimension is divided into concerns w.r.t the quality assertions from the



CPS

RT ACC EC

fast slow fine coarse high low

CC1 CC2

Car Control Component

DS1 DS2

Distance Sensing 
Component

RT: 350ms
EC: 100W

response time

accu
racy

100ms 350ms

2
0

cm
1

cm

energ
y 

co
nsu

m
ptio

nRT: 100ms
EC: 300W

100W

300W

ACC: 1cm
EC: 100W

ACC: 20cm
EC: 50W

a) Components and quality 

assertions

b) Hyperspace c) Feature tree mapped to 

dimension intervals

Fig. 1. Indexing the hyperspace with quality requirements by mapping them to dimen-
sion intervals (RT = response time, EC = energy consumption, ACC = accuracy)

components. Thus, each artefact is arranged into the hyperspace by considering
the quality assertions as coordinates on each dimension. Furthermore, quality
assertions may not only be concrete values but functions. This way, artefacts
are arranged into the hyperspace by means of point sets. Thus, the mapping can
be non-injective. However, without an index mechanism for granting access, we
cannot benefit from the hyperspace because the artefacts need to be located.

The idea is that all quality requirements of the system are considered as fea-
tures in a feature tree. Each quality requirement complies with a feature and its
classifications are subfeatures. To achieve an effective index mechanism of the
hyperspace we now map the quality features from the tree to intervals of the hy-
perspace. This mapping results in a semantic connection between the decoupled
quality assertions of the artefacts and the quality requirements of the system.
If, e.g., energy consumption, which was stated in the requirements engineering
phase, is divided into high and low we now can determine which components
in the hyperspace comply with those quality requirements. This relation is de-
picted in Fig. 1 b) and 1 c). In the right part the quality requirements can be
seen mapped to the corresponding dimensions. To further express dependencies
between quality requirements we consider approaches such as described in [2]
where propositional formulas specify fine-granular constraints between different
features which cannot directly be read from the feature model. With such propo-
sitional formulas it is possible to specify, e.g., that fine accuracy implies a fast
response time. Furthermore, fast response time can imply high energy consump-
tion. If a context change now results in the change of the quality requirement of
accuracy from coarse to fine, it can automatically be derived that not only the
implementation of the distance sensing component must be exchanged but also
the implementation of the car control component. These quality dependencies
allow for a flexible mechanism of determining which quality requirements are
affected by context changes and therefore which artefacts have to be exchanged
or modified. Thus, a new system composition can be generated automatically
for changing contexts.



3 Related Work

The only known combination of the Hyperspace approach with feature trees
is the HyperFeatuRSEB method [4]. Regarding to [14] features compose one
dimension and requirements specified in use-cases compose the other to derive
a system’s architecture. Limitations of HyperFeatuRSEB are that qualities are
not considered and that the methodology is too static in terms of only having
two fixed dimensions.

Research in the field of specifying qualities explicitly has been done in [1]
which resulted in the Component Quality Modeling Language (CQML). Later
on, an extension emerged named CQML+ [12] and finally the Energy Contract
Language (ECL) was developed as an extension of the formerly mentioned w.r.t.
energy consumption [7]. All of them specify quality contracts between software
components. In addition, Götz et al. defined a metamodel for ECL which we plan
to reuse and improve for our approach since we want to promote model-driven
development of quality aware systems.

Finally, approaches exist in [3,6,10,13] which explicitly consider qualities as
features. However, all of them don’t separate quality requirements from quality
assertions.

4 Research Method

To proof the proposed approach the concepts must be evaluated by several ex-
amples. In a first step it is essential to design a CPS scenario. Therein we plan
to use the humanoid robot NAO, manufactured by Aldebaran1, which has sen-
sors and actuators and thus forms a CPS, since it can interact with the physical
world and communicate with the cyber world such as cloud services. The second
step is to use our concepts to specify and implement this scenario to approve our
approach. More CPS scenarios will follow then. Furthermore, research has to be
done in the areas on how quality assertions can be measured and guaranteed,
how contexts can be modelled and related to quality requirements, how this ap-
proach can benefit from context-oriented programming [8], and how contexts can
parameterise quality dependencies. For the latter, a good starting point would
be to analyse first-order logic to be feasible since predicates can be defined which
then are usable to specify interrelations between qualities as a function of a con-
text. Crosscutting to the above research directions, a good tooling platform must
be implemented to support development of quality aware systems for which a
new system composition can be generated at runtime.

Acknowledgements

This research is inspired and supervised by Prof. Dr. rer. nat. habil. Uwe Aßmann
and is co-funded by the European Social Fund and Federal State of Saxony within
the project ZESSY #080951806.

1 http://www.aldebaran-robotics.com/

http://www.aldebaran-robotics.com/


References

1. Aagedal, J.O.: Quality of Service Support in Development of Distributed Systems.
Ph.D. thesis, University of Oslo, Norway (2001)

2. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) Software Product Lines, Lecture Notes in Computer Science,
vol. 3714, pp. 7–20. Springer Berlin / Heidelberg (2005)

3. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Pastor, O., Falcão e Cunha, J.a. (eds.) Advanced Information Systems En-
gineering, Lecture Notes in Computer Science, vol. 3520, pp. 381–390. Springer
Berlin / Heidelberg (2005)

4. Böllert, K.: Objektorientierte Entwicklung von Software-Produktlinien zur Serien-
fertigung von Software-Systemen. Ph.D. thesis, Technische Universität Ilmenau
(2002)

5. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements
in Software Engineering. Kluwer Academic Publishers Boston/Dordrecht/London
(2000)

6. Etxeberria, L., Sagardui, G.: Variability driven quality evaluation in software prod-
uct lines. In: Proceedings of the 2008 12th International Software Product Line
Conference. pp. 243–252. IEEE Computer Society, Washington, DC, USA (2008)

7. Götz, S., Wilke, C., Schmidt, M., Cech, S., Aßmann, U.: Towards energy auto
tuning. In: Proceedings of First Annual International Conference on Green Infor-
mation Technology (GREEN IT) (2010)

8. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology 7(3), 125–151 (March-April 2008)

9. Lee, E.A.: Cyber physical systems: Design challenges. Tech. Rep. UCB/EECS-
2008-8, University of California at Berkeley, Electrical Engineering and Computer
Sciences (January 2008)

10. Myllärniemi, V., Männistö, T., Raatikainen, M.: Quality attribute variability
within a software product family architecture. In: Second International Confer-
ence on the Quality of Software Architectures (QoSA) (2006)

11. Ossher, H., Tarr, P.: Multi-dimensional separation of concerns and the hyperspace
approach. In: Kluwer (ed.) Proceedings of the Symposium on Software Architec-
tures and Component Technology: The State of the Art in Software Development
(2000)

12. Röttger, S., Zschaler, S.: Cqml+: Enhancements to cqml. In: Proceedings of the
1st International Workshop on Quality of Service in Component-Based Software
Engineering. pp. 43–56. Cépaduès-Éditions, Toulouse, France (2003)

13. Sincero, J., Schröder-Preikschat, W., Spinczyk, O.: Approaching non-functional
properties of software product lines: Learning from products. In: APSEC. pp. 147–
155 (2010)

14. Sochos, P., Philippow, I., Riebisch, M.: Feature-Oriented Development of Software
Product Lines: Mapping Feature Models to the Architecture. In: Object-Oriented
and Internet-Based Technologies, pp. 23–42 (2004)


	Quality Controlled Composition Generation
	Motivation
	Hyperspace Quality Controlled Composition System
	Related Work
	Research Method


